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In this work, we present a method for personalizing human-robot interaction by using emotive facial expres-

sions to generate affective robot movements. Movement is an important medium for robots to communicate

affective states, but the expertise and time required to craft new robot movements promotes a reliance on

fixed preprogrammed behaviors. Enabling robots to respond to multimodal user input with newly generated

movements could stave off staleness of interaction and convey a deeper degree of affective understanding than

current retrieval-based methods. We use autoencoder neural networks to compress robot movement data and

facial expression images into a shared latent embedding space. Then, we use a reconstruction loss to gener-

ate movements from these embeddings and triplet loss to align the embeddings by emotion classes rather

than data modality. To subjectively evaluate our method, we conducted a user survey and found that gener-

ated happy and sad movements could be matched to their source face images. However, angry movements

were most often mismatched to sad images. This multimodal data-driven generative method can expand an

interactive agent’s behavior library and could be adopted for other multimodal affective applications.
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1 INTRODUCTION

We present a method for personalizing human-robot interaction by using emotive facial ex-
pressions to generate affective robot movements. Robots can use movement to convey internal
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affective states for more compelling human-robot interaction. However, creating movements of-
ten requires working knowledge of robotics and kinematics. Even more accessible methods such
as kinesthetic teaching are constrained by limited access to robots. Relying primarily on retriev-
ing preprogrammed user-crafted responses from a static database can eventually diminish users’
interest in the robot [25]. Generating new behaviors in response to different users’ inputs may
mitigate this novelty effect and promote prolonged interaction. Machine learning models, partic-
ularly deep neural networks, have achieved state-of-the-art performance in a variety of applica-
tions, such as perceived emotion recognition [38]. Neural networks have also shown promise in
data generation, such as generative adversarial networks for photorealistic images and conversa-
tional chatbots [15, 20]. Therefore, we believe that neural networks are well-suited for affective
generation applications.

As a proposed application, we envision a personalized interaction scenario where a human in-
teractant’s facial expressions actively generate a robot’s movement responses, e.g., in the greetings
or acknowledgments. We chose to mirror facial expressions as the input modality given the indus-
try standard of cameras installed on robots and the importance of gaze in improving subjective
and social evaluations of robots [2]. We also considered the practical availability of facial expres-
sion datasets with emotion labels (e.g., the Cohn-Kanade facial expression database [23]) as well
as the potential positive effects of affective mirroring in cooperative scenarios through emotional
contagion [7]. We chose robot movement as the output modality given the uniqueness of this
affordance to embodied robots compared to unembodied voice- or screen-based agents [18]. For
a given robot, prior expert and novice users create a dataset of manually crafted movements la-
belled according to emotions, e.g., happiness, sadness, anger. To translate between the modalities,
we propose using neural networks to learn the alignment between the facial images and the se-
quential movements while maintaining a semantic link through the shared emotion labels. In this
scenario, the network-generated movements do not supplant, but rather complement the existing
user-crafted movement dataset to expand the robot’s available behavior library. In application, the
network-generated movements act as “inbetweens,” either chaining together user-crafted “key”
movements or acting as idling motions.

We implemented this approach using the zoomorphic Blossom robot [40]. We used a convo-
lutional variational autoencoder (VAE) to compress Blossom’s emotion-labelled movements—
head roll, pitch, yaw, and vertical translation—into a latent embedding space and a convolutional
image encoder to compress emotion-labelled facial expression images into the same latent space.
To align the disparate modalities in the shared latent space, we implemented a triplet loss objective
to cluster embeddings by emotion classes rather than by modality. We evaluated this approach in
an online user survey where participants watched a video of a robot movement and selected the
best corresponding facial expression image from a set of possible images, i.e., matching a happy
movement to a happy face image. We found that generated happy and sad movements were well-
matched, but angry movements were mostly mismatched to sad images.

Our contribution is an approach for translating facial expression images into affective robot
movements using neural networks. Prior works in robot behavior generation synthesize new be-
haviors according to the robot’s communicative affordances (e.g., movement, speech) [29, 30, 41].
Other works in affective human-robot interaction bisect the robot’s response generation pro-
cess: A classification model first recognizes human input according to discrete emotion classes,
then a retrieval system selects an appropriate robot response from a predefined library of behav-
iors [13, 26, 31]. Compared to these works, we implement an end-to-end multimodal neural net-
work that learns an alignment between disparate input and output modalities and can directly
translate facial expressions into affectively appropriate robot movements. Our approach has fur-
ther implications for expanding an agent’s behavior library and for other multimodal affective
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applications, e.g., a listening ear responding to perceived text sentiment and audio inflection, or a
video-watching companion reacting to the multimodal context of video.

2 RELATED WORK

We based our approach upon prior works in robot movement creation and neural networks.

2.1 Robot Movement

Movement enables robots to interact with the world with affordances beyond screen- and audio-
based agents [18]. Apart from goal-oriented actions such as locomotion or manipulation, move-
ment can also communicate affective states, either in discrete categories (e.g., happy, sad, angry
[12]) or on a continuous spectrum (e.g., valence, arousal [37]). LaViers argues that humanizing
movement is of paramount importance for human-robot interaction and recommends referencing
movement-based arts such as dance and acting in the design of robot movements [24]. However,
designing emotive movements requires depth of knowledge in robotics, movement analysis, and
affective expression. Learning from demonstration through either direct manipulation of a robot’s
actuators or remote teleoperation [3] is more accessible to lay users but still requires physical ac-
cess to a robot and may not be generalizable to other platforms. To reduce the need for hand-made
user-crafted behaviors, researchers have explored generating movements using machine learning
models [9, 19]. We are interested in generating affective movements for robots using machine
learning techniques, specifically neural networks. We view these generated movements not as
supplanting the user-crafted movements, but rather complementing them to expand the robot’s
available behaviors.

2.2 Neural Networks

2.2.1 Robot Movement Generation. Designing robot movements is often time-intensive and lim-
ited by proximity to physical robots. Machine learning models can use existing movements to
expand a robot’s available behavior library. Marmpena et al. generated motion for a humanoid
robot by chaining poses together from a VAE’s learned latent space [29, 30]. Yoon et al. gener-
ated gesticulation motions for a humanoid robot using a multimodal dataset of speech, text, and
posture [41]. The works in this space have largely focused on humanoid embodiments, perhaps
due to the familiarity and availability of humanoid movement data. Additionally, these approaches
rely on datasets that are either expert-crafted or sourceable in large quantities, e.g., professionally
recorded speeches to yield paired multimodal datasets. We adopt similar neural network methods,
but instead rely on user-crafted movements. We believe that sourcing movements from users is a
more accessible approach and yields samples that better reflect the potential end-users of such a
system.

2.2.2 Applications of Affective Movement. The ability for data-driven neural networks to learn
features is useful for applications that may otherwise be intractable with heuristics, such as per-
ceived affective recognition and generation. Many works in this space focus on perceptive tasks,
such as supervised perceived sentiment analysis in text and images [11, 21]. Pakrasi et al. [34]
apply notions of Kansei Engineering principles to the relationship between animated motion, the
design of the character, and choice of character archetypes. Simple non-verbal movements have
been shown to improve perception of team work [22] and have even been shown to improve team
performance [8] in human robot teams. However, connecting automatic motion generation to per-
ceptual outcomes is still an open topic. Heimerdinger et al. [17] link context and environment to
the perceived valence and arousal perceptions. However, there are still significant challenges to
generating robotic motion using neural networks that are perceived affectively by people. Robots
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such as iCat [35], Muecas [10], and Miro [14] emphasize the affordance of facial expressions of the
robot. Muecas uses computer vision to both recognize users’ facial expressions and, successively,
author robot facial expressions. However, this system discretizes the input user facial expression
into discrete categories (neutral, happy, sad, fear, anger), from which the pre-crafted robot expres-
sions are selected; this alignment is hand-crafted. We are interested in expanding beyond this with
recent advancements in larger neural networks, which can operate end-to-end sans discretization
by using the emotion labels as an alignment guide. Neural networks can also generate emotive
samples of images and audio [27, 33]. Our proposed application is less technically complex than
these examples, particularly in the relatively low dimensionality of the robot’s movement com-
pared to high-dimensional images, text, and audio. We show, however, that this low-dimensional
space is sufficient for clustering affective states of movement.

2.2.3 Multimodal Machine Learning. The ability for neural networks to learn features is also
useful for multimodal applications [6]. Automatic image captioning is a common application that
learns alignments within a paired dataset of images and their corresponding textual descriptions
[5]. Reversing the task to generate images given text descriptions is a more complex task, but recent
state-of-the-art techniques are capable of generating realistic samples [36]. Nguyen et al. adopted
similar techniques to perform manifold alignment on a paired image and text dataset for robot
understanding [32]. These techniques are applicable to the multimodal input-output modalities of
robots, e.g., sensor inputs from cameras or microphones and movement outputs through actuators.

Prior works in affective human-robot interaction bisect robot response generation into recog-
nition and retrieval. First, a classification model recognizes affect from human inputs (e.g., facial
expression, speech) according to discrete emotion categories (e.g., happiness, sadness, anger) [13,
26, 31]. The system then uses the recognized emotion to retrieve an appropriate robot response
from a predefined library of behaviors.

In our approach, we bypass the intermediate classification step by using an end-to-end multi-
modal neural network with an encoder-decoder architecture. The network aligns the disparate
input and output modalities by using the emotion labels to structure its latent embedding space.
In the embedding space, the network clusters data together towards similar labels and away from
opposing labels. To generate a behavior, the network encodes the input into the embedding space
and decodes into an output with the same emotion class. Our approach directly translates the
inputs into affectively appropriate outputs and generates behaviors beyond the initial library.

We explored neural network-based techniques for robot movement generation in prior work
titled “MoveAE” [39]. In that work, we used an earlier subsection of Blossom’s movement dataset
in a movement-only VAE for movement generation and affective modification. After training the
VAE to compress the movement data into a latent space, we generated and modified movements. To
generate movements, we sampled embeddings in the latent space and decoded through the latter
decoder half of the VAE into new network-generated movements. To modify a movement, we first
selected a base movement with a given emotion label and encoded through the former encoder
half of the VAE into a latent embedding. Beside the network, we used linear regression to map the
latent space into the 2D circumplex model of affect, a relational representation of emotions on a 2D
plane of valence and arousal dimensions [37]. In this valence-arousal plane, we moved embeddings
from their original labeled emotion to a new target emotion, e.g., moving an originally happy-
labeled movement embedding to the sad region in the valence-arousal space. We then decoded the
embedding through the latter decoder half of the VAE into a network-generated affect-modified
movement.

The network presented here, dubbed “Face2Gesture,” expands upon the movement-only
MoveAE by translating affective facial expressions into robot behaviors. MoveAE implemented
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Fig. 1. The Blossom robot. The exterior (left) is made of soft materials while the interior mechanism (right)

consists of a central tower structure from which the head platform is suspended by elastic bands. The head

platform has four degrees of freedom: roll, pitch, yaw, and vertical translation.

modification within the modality of movement; Face2Gesture implements translation between the
input modality of images and output modality of movement. Face2Gesture builds upon MoveAE
by:

— Refactoring and restructuring the VAE neural network,
— Using a larger movement dataset,
— Implementing a paired image-based VAE network for the facial expressions from the Cohn-

Kanade database [23],
— Optimizing on a triplet loss to align the disparate movement and image modalities in a shared

latent space, and
— Outputting either reconstructions of user-crafted movements or newly synthesized image-

generated movements.

We use techniques from these previous works to create an affective response system that gener-
ates robot movements from facial expressions. We perform intermodal translation by using tech-
niques from multimodal machine learning, specifically encoder-decoder architectures and emotion
label-based triplet loss. The resulting system encodes both robot movements and human facial ex-
pressions into a shared latent embedding space and decodes these embeddings to generate move-
ments from either modality.

3 METHODS

We used an existing robot platform, datasets of movements and face images, and encoder-decoder
neural networks.

3.1 Robot Platform

We used the Blossom robot, an open-source social robot (Figure 1) [40]. Blossom’s internal mech-
anisms consist of a head platform suspended from a tower structure that rotates about its base
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Fig. 2. Examples of Blossom movement data and dataset augmentations visualized through motor trajecto-

ries. Tower 1 controls the pitch of the front of the head, towers 2 and 3 control the left–right rolling of the head,

and base controls left–right yaw. Each original movement is a 4.8-second sample from a user-crafted move-

ment (left). The horizontal axis is time; the vertical axis is the radial motor position. Shearing the degrees of

freedom (DoFs) in time slightly nudges their trajectories relative to each other. Mirroring horizontally swaps

the left and right tower motors (2 and 3) and reverses the base rotation. Decoupling the left and right tower

motors separates the DoFs to promote rolling motion. Shifting the average base rotation slightly promotes

yawing motion.

platform. Blossom features four degrees of freedom (DoFs): roll, pitch, yaw, and vertical trans-
lation, though we disable vertical translation to simplify the control interface. The robot achieves
motion with four actuators: tower motors 1, 2, and 3 control the front, left, and right sides of the
head, respectively, and a motor in the base rotates the tower left and right. The robot’s head can
pitch up and down, roll left and right ±45°, yaw left and right ±150° about its base, and vertically
translate up and down. Although the robot’s DoFs are limited compared to more complex embodi-
ments, it features a large range of motion and head movements alone can convey complex affective
information [1]. Users can control the robot with a mobile browser-based application that maps
the orientation of the phone into motion for the robot’s body.

3.2 Data

3.2.1 Movements. We used robot movement samples that we crowdsourced from lay users.
We asked users to first view video prompts of cartoon characters (SpongeBob, Pikachu, Homer
Simpson—recognizable characters with recognizable facial and bodily emotional expressions) con-
veying different emotions (happiness, sadness, anger), then to puppeteer the robot with their
phones as if it were conveying the same emotion. Some movements were collected locally in-
person, though most were collected remotely by users teleoperating the robot. Users generally
found anger the hardest emotion to convey. To account for the subjectivity of the user-crafted sam-
ples, we filtered the dataset by deploying a survey to another set of users. Each question contained
a video of the robot performing each movement, followed by a question asking users to select
the conveyed emotion. We deployed this filtering survey through Amazon Mechanical Turk and
received over 250 responses, averaging 25 ratings for each movement. We kept only movements
recognized at a threshold of 50%, an arbitrary margin above the chance level of 33% for each of the
three emotions. This filtering downsized the original dataset from over 200 movements samples
to approximately 140 movement samples. We then balanced the emotion classes by oversampling
from the smaller class populations. Because the neural network requires fixed-length inputs, we
took random 4.8-second samples from each movement. Though we can expand the data through
augmentation, we took care to perform only augmentations that are emotionally neutral, e.g., mir-
roring a movement from left to right is neutral and valid, but modulating the pitch of the robot’s
head downwards or upwards may affect its conveyance of sadness and is thus invalid. We designed
the following augmentations (Figure 2):

— Shearing the DoFs in time by slightly nudging their trajectories relative to each other.
— Mirroring horizontally (i.e., along a vertical plane bisecting the left and right halves of the

robot) by swapping the left and right tower motors (2 and 3) and reversing the base rotation.
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Fig. 3. Neural network for translating face images into movements. The user-crafted movements xm (4.8

seconds at 10 Hz with four DoFs→ 48 × 4) are encoded into a 36D embedding space zm ∼ N (μm ,σm ) (top

left). The movement embeddings zm are then decoded to reconstruct the original input ym→m (right). The

face images xf are encoded into the same 36D embedding space zf ∼ N (μf ,σf ) (bottom left). The face

embeddings zf are then decoded to generate new movements yf→m (right). (Face images ©Jeffrey Cohn).

— Decoupling the left and right tower motors. Because these motors are often synchronized
in the user-crafted movements, they have a tendency to collapse into copies of each other.
Separating these DoFs slightly promotes rolling motion without modifying the emotion.

— Shifting the average base rotation slightly. Because the robot faces directly forward in many
user-crafted movements, this augmentation compensates for the neglect of the base motor
and promotes yawing motion.

Because of the relatively small size of the user-crafted movement dataset, enabling augmentation
was necessary to avoid completely overfitting.

3.2.2 Face Images. We used the Cohn-Kanade dataset, a collection of facial expression videos
from a diverse range of actors [23]. We used the final frame at the apex of each emotion, resulting
in approximately 150 samples. We augmented the data with low-magnitude rotation, translation,
horizontal mirroring, scale, shear, and brightness transformations.

3.3 Network

We constructed the end-to-end network using convolutional encoders and decoders for each data
modality. We aligned the encoded latent spaces using triplet loss.

3.3.1 Movement VAE. We used a VAE to compress the movement data into embeddings in a
lower-dimension latent space (Figure 3, top left to right). The encoder fenc uses 1D convolutions
that stride across the time dimension of the movements xm ∈ Xm and outputs the latent space
distribution parameters (log-mean and log-variance of a distribution N (μm ,σm )). We empirically
set the latent dimension to 36 parameters; we arrived at this dimensionality by decreasing the
latent space size until the reconstructed movements lost too much information, i.e., were very
smoothed out. The decoder fdec uses these parameters to sample embeddings zm ∼ N (μm ,σm ),
which pass through deconvolutional layers to reconstruct the original movementsym→m . We used
LeakyReLU (α = 0.1) and batch normalization after each convolutional and fully connected layer.
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ALGORITHM 1: Training algorithm

Input : Input movements Xm , input face images Xf

Fm (xm ) ← fdec ( fenc (xm )) //movement autoencoder neural network;

Ff (xf ) ← fembd (ResNet50 (xf )) //face image encoder neural network;

while not converged do
xm ,xf //minibatch of movements and faces;

ym→m ← Fm (xm ) //movement reconstructions;

zm ← fenc (xm ) //movement embeddings;

zf ← Ff (xf ) //face embeddings;

Lr ← MSE (ym→m ,xm ) //reconstruction loss with mean-squared error;

LK L,m ← KL(zm ) //movement KL divergence;

LK L,f ← KL(zf ) //face KL divergence;

Lt ← T (zm , zf ) //triplet loss Equation (1);

L ← wrLr +wK L,mLK L,m +wK L,f LK L,f +wtLt //overall loss, backpropagate to update

networks Fm and Ff ;

yf→m ← fdec (zf ) //pass face embeddings through decoder to generate movements;

end

Ff→m (xf ) ← fdec (Ff (xf )) //face-to-movement translation network;

We calculated the reconstruction loss Lr as the mean-squared error between the raw trajectories of
the original and reconstructed movements. The VAE also uses Kullback-Leibler (KL) divergence
as a loss LK L,m to ensure that the embedding distribution approximates a normal distribution, i.e.,
N (μm ,σm ) ≈ N (0, 1).

3.3.2 Face Image Encoder. We encoded the images of f aces xf ∈ Xf into the same latent space
by first passing them through a pretrained ResNet50 model [16], then through two fully connected
layers (Figure 3, bottom left). Similar to the VAE, we used LeakyReLU and batch normalization
after the fully connected layers, and the final encoder layers yield the embedding distribution
zf ∼ N (μf ,σf ). We added the KL divergence of the face embeddings LK L,f to the overall loss.

3.3.3 Shared Latent Space Alignment Using Triplet Loss. Because we do not have paired align-
ment between robot movements and face images, we used triplet loss Lt to align the embeddings
Zm and Zf in the shared latent space [32]. The triplet loss minimizes the distance between an
anchor embedding za and a positive sample embedding z+ and maximizes the distance between
the anchor and a negative sample embedding z−. For each sample in a minibatch, we mined posi-
tive samples by randomly sampling embeddings that share the same emotion class, and negative
samples from the other classes. We used an imbalanced mining scheme wherein movement embed-
ding anchors can sample from either modality, while face embedding anchors only select positive
samples from the movement embeddings. The intuition is that the image encoder can easily sep-
arate the emotions due to the pretrained ResNet50 model and should primarily be fine-tuned to
match the movement embedding space. For example, given a happy movement as an anchor, posi-
tive samples come from happy movements and images, and negative samples come from the set of
sad and angry movements and images. However, given a happy face image as an anchor, positive
samples come only from happy movements. We used the Euclidean distance function d (a,b)2 with
no margin.

Lt =
∑

za ∈Zm∪Zf

max (d (za , z+)2 − d (za , z−)2, 0) (1)
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The overall loss objective of the network is a weighted combination of the reconstruction, KL,
and triplet losses:

L = wrLr +wK L,mLK L,m +wK L,f LK L,f +wtLt . (2)

We empirically set the weights as wr = 1 × 104, wK L,m = 1 × 10−2, wK L,f = 1 × 10−1, and wt =

1×103. We adjusted these weights based on subjectively appraising the reconstructions and visually
checking the clusters in the latent space.

Algorithm 1 describes the training loop. Due to the subjectivity of the outputs, we both moni-
tored the loss curves and appraised the quality of the image-generated movements during training.
After training, we can use the function Ff→m (xf ) = fdec (Ff (xf ))—the pipeline of the face encoder
and the movement decoder—to translate face images into movements yf→m (Figure 3, bottom left

to right). We trained for 1,500 epochs with a learning rate of 1 × 10−2, batch size of 32, Adam
optimizer, and an 80-20 train-test split.

4 EVALUATION

We evaluated the approach through both objective technical metrics and a subjective user survey.

4.1 Network Evaluation

We evaluated the technical performance of the method through its performance in minimizing
the loss objectives. We also monitored the outputs: the reconstructed and image-generated move-
ments and the separability of the latent embedding space. As an ablation study, we analyzed the
performance of the network optimizing either only reconstruction loss or only triplet loss.1

4.2 User Evaluation

Due to the subjective nature of the proposed method’s outputs, we performed a user evaluation
through an online survey. We constructed a survey where each question showed a video of a move-
ment and a lineup of three facial expression images, consisting of the movement’s actual source
image and two random images sampled from the other emotion classes. We asked users to view
the video and select the image that best corresponds to the movement. We defined a baseline as
using a source face image’s known emotion label and randomly selecting a user-crafted movement
sample of the same corresponding emotion class, e.g., pair a randomly chosen happy face image
with a randomly chosen happy movement sample. Rather than claim that our method improves
upon the baseline, our method avoids the repetitiveness of recycling a predefined library of behav-
iors, the benefits of which would require a longitudinal evaluation. Our simpler hypothesis is that
the image-generated movements will be recognized above the 50% level used to filter the dataset
(Section 3.2.1). We deployed this comparison survey on Amazon Mechanical Turk and received
responses from 50 participants, each of whom viewed the same set of 30 selected user-crafted and
generated movement samples.

5 RESULTS

We analyzed the results through objective technical metrics and the subjective user evaluation.

5.1 Network Training

We monitored the reconstruction and triplet losses during training (Figure 4). There is a gap be-
tween the triplet training and testing loss, indicating overfitting. As explained later, this gap may

1Because KL divergence only helps shape the learned latent space but does not by itself generate movements or align

embeddings, we do not ablate for a KL-only configuration.

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 3, Article 45. Publication date: August 2024.



45:10 M. Suguitan et al.

Fig. 4. Network training curves for reconstruction (left) and triplet loss (right). Triplet loss shows signs of

overfitting, perhaps due to a coupling of perceptually similar happy and angry movements.

Fig. 5. Examples of original movements xm (top) with their reconstructionsym→m (bottom) (happy, left; sad,

middle; angry, right). The reconstructions maintain the overall trajectories but have difficulty preserving the

exaggeration and low-frequency high-amplitude components of the originals.

be a limitation of the network’s ability to separate happy and angry movements, particularly those
it may not have trained on.

5.1.1 Reconstruction. We evaluated reconstruction quality by comparing the inputs xm to the
outputs ym→m (Figure 5). The outputs capture the overall trajectories of the inputs, but have diffi-
culty preserving exaggeration and tend to smooth out low-amplitude high-frequency “jittering.”

5.1.2 Embedding Separation. We evaluated embedding separability by visualizing the latent
space Zm ∪ Zf using t-SNE (Figure 6, left) [28]. Happy and sad samples are well-aligned, but
angry movements are barely separated from happy movements. This coupling may be due to the
ambiguity in the data itself (i.e., happy and angry are both high arousal affective states and are thus
difficult to delineate with a simple embodiment) and may also explain the overfitting in the triplet
loss training curve (Figure 4, bottom). Additionally, even user-crafted happy and angry movements
were less correctly recognized than sad in the video user survey (Figure 11).

5.1.3 Ablation. Using only reconstruction loss defines an upper bound for generating realistic
movements but does not yield noticeable improvements (Figure 7). Addressing the deficiencies of
the reconstructions (oversmoothed, limited exaggeration) may require alternate techniques such
as frequency-domain representation [4, 42].

Using only triplet loss defines an upper bound for the latent space separability (Figure 6, right).
Even without other objectives, angry and happy movements are still close, suggesting that the
coupling is not due to the other losses, but is rather a limitation of the model itself.
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Fig. 6. t-SNE plots of the shared latent embedding space for the full multi-objective network (left) and a

network optimizing only triplet loss (right). Colors indicate modality (movements, faces) and emotion (happy,

sad, angry). Stars indicate centroids of each class. Happy and sad movements and faces are closely aligned,

but angry movements are barely separated from happy movements, even when optimizing only for triplet

loss (right).

Fig. 7. Reconstructions from a network optimizing only reconstruction loss. There is only marginal improve-

ment over the standard network (Figure 5); exaggeration is better preserved, but jittering is still smoothed

out.

5.1.4 Generation. Throughout training, we appraised the subjective quality of image-generated
movements yf→m (Figures 8, 9). The generated movements retain many of the characteristics of
the user-crafted movements, e.g., happy movements have high tower 1 position and sinusoidal
out-of-phase rolling motion in tower motors 2 and 3, sad movements have lower tower 1 posi-
tion and overall flatter motion. As with the reconstructions, the generated movements have less
exaggeration and jittering than the originals.

5.1.5 Kinematic Comparison. We compared the user-crafted and image-generated movements
from their respective test sets by calculating kinematic features (Table 1, Figure 10). We calculated
range and speed as the peak-to-peak distance and gradient for each DoF, respectively. We calcu-
lated pitch as the difference between the positions of the front of the head (tower motor 1) and the
average of the sides of the head (tower motors 2 and 3). Positive pitch is looking upwards, and nega-
tive pitch is looking downwards. We averaged speed and pitch across the length of each movement.
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Fig. 8. Examples of source face images xf paired with their generated movements yf→m (happy, left; sad,

middle; angry, right). The generated movements maintain similar characteristics of the original user-crafted

movements xm (Figure 5), e.g., happy movements have high tower 1 position and sinusoidal out-of-phase

rolling motion in tower motors 2 and 3, sad movements have lower tower 1 position and overall flatter motion.
∗Note: due to licensing restrictions, the face image in the second set of results (top row center) has been replaced

with a publishable image from the same emotion class. (Face images ©Jeffrey Cohn).

Fig. 9. Examples of image-generated happy (top), sad (middle), and angry (bottom) movements shown in the

survey. ∗Note: as with the previous figure, due to licensing restrictions, the face image in the second set of results

(middle row) has been replaced with a publishable image from the same emotion class. (Face images ©Jeffrey

Cohn).

The image-generated movements are mostly comparable to the user-crafted movements, though
the user-crafted movements have larger between-class variation (Table 1, μ columns), such as the
range and speed of the tower motors (Figure 10, left column). User-crafted angry movements in
particular exhibit noticeably higher base range and speed than their image-generated counterparts
(Figure 10, right column).
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Table 1. Analytical Comparison of the Kinematic Features (Figure 10)

Feature Source
Happy Sad Angry

μH σH μS σS μA σA

Tower range
User 0.61 0.18 0.99 0.26 0.89 0.30
Gen 0.79 0.18 0.85 0.18 0.78 0.17

Base range
User 0.31 0.23 0.26 0.14 0.92 0.65
Gen 0.47 0.23 0.30 0.09 0.35 0.16

Tower speed
User 1.60 0.61 0.80 0.25 1.94 1.25
Gen 1.61 0.25 1.42 0.33 1.56 0.27

Base speed
User 0.54 0.51 0.32 0.21 1.19 0.40
Gen 0.58 0.13 0.58 0.09 0.62 0.19

Posture
User −0.11 0.83 −2.19 0.64 −0.53 1.47
Gen 0.92 1.04 −1.38 0.90 −1.09 0.97

The image-generated movements approximate the trends of the mean speed, μ , of the

user-crafted movements, but often have smaller standard deviations σ .

5.2 User Evaluation

The user evaluation serves as a subjective appraisal of the generated movements. We distributed a
survey asking users to match a video of a movement—either user-crafted or image-generated—to
its corresponding source facial expression image; we received 50 responses, but did not record
demographic information. For the survey, we used only data from the respective movement and
image test sets, i.e., samples that the network did not train on. For the user-crafted movements,
we randomly paired face images only with movements from the movement test set. For the
image-generated movements, we used only movements generated from images from the image
test set. We used five movements for each condition, resulting in a total set of 30 movements
(2 sources × 3 emotions × 5 samples). We analyzed the user evaluation results with a confusion
matrix (Figure 11); perfect results would be an identity matrix. The randomly sampled user-crafted
movements are overall well-matched (left). The image-generated happy and sad movements
are less well-matched (right) but are still above the 50% level we used for filtering the dataset
(Section 3.2.1). However, generated angry movements are recognized below chance, being
confused primarily for sadness, but also for happiness. To compare the perceived recognition
accuracies between the user-crafted and image-generated movements, we performed equivalence
tests (two one-sided t-tests) with an equivalence bound of ±10%. These tests yielded p-values of
0.39, 0.96, and 0.99 for happy, sad, and angry, respectively, showing that none of the classes are
significantly equivalent.

6 DISCUSSION

The network training results show that the network is capable of reconstructing the original user-
crafted movements and generating new movements from the shared latent space. The difficulty in
separating angry movements can be attributed to the limitations of both the model and the plat-
form. Users who created movements noted that it was difficult to convey anger in particular due to
the robot’s lack of appendages. This limitation may have resulted in angry and happy movements
being perceptually similar, as they are both classified as high-arousal emotions on the circumplex
model [37]. Additionally, due to the human uninterpretability of the learned embedding feature
space and stochastic nature of t-SNE, the 2D visualization may have found more variance in
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Fig. 10. Comparison of kinematic features between the user-crafted and image-generated movements. The

legend (bottom left) is the emotion (Happy, Sad, Angry) and source (User-Crafted, Image-Generated). The

user-crafted movements show more between-class variation, but the generated movements preserve many

of the overall features.

latent features related to arousal and not valence, which could have delineated happy and angry
samples.

The confusion of generated angry movements as sad may be attributed to the difficulty in main-
taining the exaggeration of the user-crafted movements, as corroborated by the kinematic analysis
(Figure 10, right column). This suggests that exaggeration is an important feature for conveying
anger. Though the generated happy and sad movements were recognized above chance, the ac-
curacies were not significantly equivalent to the user-crafted movements. We view the generated
movements as not supplanting, but rather complementing existing user-crafted behavior libraries.
For example, an agent could use the more legible user-crafted behaviors for “active” scenarios such
as call-and-response, while using the generated behaviors for “passive” scenarios such as greeting
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Fig. 11. Confusion matrices for both the user-crafted (left) and image-generated movements (right). Partici-

pants viewed videos of the movement, then selected the best corresponding face image from a lineup. While

the perceived recognition accuracies for the image-generated movements are lower, happy and sad are still

recognized above the 50% level. However, generated angry movements are recognized below chance and are

most often mismatched to sad images.

or “inbetween” motions chaining together “key” sequences. To avoid using potentially confusing
generated movements (e.g., generated happy movements potentially interpreted as sad), we could
filter usable generated movements by measuring similarity to the user-crafted movements (e.g.,
minimizing embedding distances in the latent space) or develop improved network architectures
that better preserve the original movement affects.

6.1 Limitations and Future Work

We used only a subset of the six canonical emotions [12], which themselves are a discretization of
the broad continuous spectrum of emotions [37]. This simplification was done in part to reduce
the task to the most legible emotions, but also due to the limitations of the limbless and potentially
velocity-constrained robot. Additionally, there may be ambiguity within the image dataset itself.
Angry and sad images are both low-valence emotions that may be confounding depending upon
both the performer and interpreter of the expression. This discrepancy is orthogonal to the con-
fusion between angry and happy movements and highlights disparities between movement and
images as affective modalities. Future work could involve using a more expressive platform with
more DoFs, expanding the range of emotions and data modalities (e.g., text, audio), and deploying
the system in a real-time interactive scenario.

While we achieved good survey results using a between-class lineup, i.e., one image for each
of the three emotion classes, the unpaired nature of the different dataset modalities would make
it difficult to discern the source image from a within-class lineup, e.g., , it would be difficult to
confidently select the source happy image from a lineup consisting of only happy images. Al-
though the usability of this approach on unpaired and separately collected data can be seen as a
feature, future work would benefit from collecting a paired dataset of prompts and multimodal be-
havior demonstrations in an attempt to achieve a deterministic translation function. Additionally,
new transformer-based neural networks have achieved new state-of-the-art performance on mul-
timodal tasks such as text-to-image generation [36]; such architectures may prove to be invaluable
for future applications in affective computing, but are also increasingly complex compared to the
VAE network we presented here.
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7 CONCLUSION

In this work, we demonstrated an approach for generating robot behaviors from emotive images
using neural networks. We used convolutional encoders to compress affective robot movements
and facial expression images into a shared latent embedding space. We used a triplet loss objective
to align the multimodal embeddings by emotion, e.g., bringing happy movements closer to other
happy movements and faces and separating them from sad and angry movements and faces. We
then used a convolutional decoder to generate movements from embeddings from either modality.
Through a subjective user evaluation, we found that happy and sad image-generated movements
were recognizable and well matched to their source images above a 50% level, but generated angry
movements were mostly mismatched to sad images. Though the perceived recognition accuracies
were not significantly equivalent to the user-crafted movements, the generated movements are
still usable for expanding the agent’s behavior library. Future behavior systems for affective agents
can adopt this intermodal approach with different modalities, such as generating movements from
speech or other emotion-labeled inputs.
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